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An accurate shell model of spherical Coulomb crystals is presented. Employing intrashell angular particle
positions that correspond to the global energy minima of the pertinent Thomson problems, it yields rigorous
upper bounds to the exact energies that are accurate to within 0.03%, which constitutes an improvement of two
orders of magnitude over its predecessors based upon continuous intrashell distributions. In addition, the
present model faithfully reproduces mean crystal radii and shell occupancies without recourse to any empirical
parameters. Thanks to its simple form and the well-known asymptotics of the Thomson problem at the bulk
limit, it affords analytical formulas for energies and mean crystal radii of very large spherical Coulomb
crystals. Moreover, it rigorously accounts for certain features of the less accurate models published previously.
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I. INTRODUCTION

The concept of spherical Coulomb crystals, i.e., collec-
tions of particles interacting through a sum of Coulombic
and harmonic potentials �1�, emerges in diverse branches of
physics and chemistry. In plasma research, it is employed in
the description of low-temperature gases of ions confined by
electromagnetic traps �2,3� and in studies of dusty plasmas
�4�. In the solid state, two-dimensional Coulomb crystals are
known as Wigner molecules �quantum dots at low confine-
ment strengths� �5�. In the electronic structure theories of
quantum chemistry, they constitute the strong-correlation
limits of harmonium atoms that are used in calibration and
benchmarking of approximate approaches to the electron
correlation problem �6�, making the knowledge of their prop-
erties a prerequisite for derivation of the relevant electronic
wave functions �7,8�.

The particle configurations that correspond to the global
minima of the potential energy

E�N� = �
i�j=1

N

��rij� , �1�

where

��r� =
1

3
�r2 + 2r−1� , �2�

exhibit well-pronounced shell structures �9–11�. In this pa-
per, we present a simple formalism that, by faithfully mod-
eling this feature, yields very accurate property estimates for
spherical Coulomb crystals.

II. THEORY

Consider K concentric spherical shells with the radii �Rk�
�where ∀k Rk+1�Rk� and occupancies �nk� that satisfy the
condition

�
k=1

K

nk = N . �3�

The angular particle positions within the kth shell are those
of the global energy minimum ETh�nk� of the Thomson prob-
lem �i.e., nk electrons confined to the surface of a sphere with
a unit radius �12,13��. The intershell interactions are approxi-
mated by the first �monopole-monopole� term of the perti-
nent multipole expansion. Under the assumption
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the potential energy E�N� of a spherical Coulomb crystal of
N particles is thus
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which upon minimization with respect to �Rk� produces
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where
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2
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Therefore,
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Shell models of spherical Coulomb crystals involving
continuous surface charge distributions that give rise to
spherical capacitors have been considered in the past
�14–16�. Hasse and Avilov �HA� proposed a model with
��n�=n �14�, whereas Tsuruta and Ichimaru �TI� set ��n�
=n−n1/2 together with additional correction terms �15�.
There has also been a recent attempt by Kraeft and Bonitz
�KB� to improve the poor performance of the HA and TI
approximations by introducing an empirical correction factor
��1.104 in ��n�=n−� n1/2 �16�. It should also be noted that
a model analogous to the present one has been considered for
the much simpler two-dimensional case, where the particles
are located at the vertices of regular polygons sharing a com-
mon center �17�.

Despite the appearance of being a minor modification, the
present model constitutes a dramatic improvement over the
HA, TI, and KB approaches. First of all, as reflected by the
maximum relative error of 0.03% compared with that of 5%
reported for the TI model �16� it produces energy estimates
that are orders of magnitude more accurate than those af-
forded by its predecessors. Second, it does not rely on any
empirical parameters. Third, even more importantly, as the
neglect of the higher-order terms in the multipole expansion
is equivalent to averaging the energy over 3K Euler angles
describing the shell rotations, the right-hand side of the ex-
pression �8� is greater or equal to the actual sum of the intra-
and intershell energies, which in turn is greater or equal to
the exact energy of spherical Coulomb crystal that obtains
upon further relaxation of the particle positions. Conse-
quently, the expression �8� provides an extremely accurate,
rigorous upper bond to the exact energy. Fourth, as the con-
jectured large-n behavior of the Thomson energy �18,19�
yields

��n� = n − �1 n1/2 + �2 n−1/2 + ¯ �10�

�note the appearance of a term that explains the observed
improvement in the performance of the KB model over its TI
counterpart�, the present approach readily lends itself to an
analytical workout that results in the large-N asymptotics
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for the energy e�N�=2�N�N−1��−1E�N� per particle pair and
the mean crystal radius ri��n� �see the text following Eq.
�14� for the explanation of the origin of these expressions�.

Results of test calculations employing the published val-
ues of ETh�n� for all n�400 �13� testify to the predictive
power of the present model. For spherical Coulomb crystals
of up to 160 particles, for which results of reliable searches
for the global energy minima are known �9–11�, the values of
e�N� are reproduced within 3.2�10−4 �note that the inequal-
ity ∀N 1�e�N��

6
5 holds, hence the absolute and relative

errors are essentially the same�, with the largest error at-
tained at N=29 in the case of shell occupancies taken from

the literature data �Fig. 1�. The error in e�N� diminishes only
slightly �to the maximum value of 3.1�10−4 for N=27�
upon optimization of the shell occupancies �nk�. In all cases,
the upper-boundedness property is observed, as expected. In-
terestingly, the predicted mean crystal radii ri��N� are al-
ways either exact or underestimated �by at most 7�10−4 for
N=29� when the fixed occupancies are used �Fig. 2�. Al-
though optimizing the shell occupancies worsens the accu-
racy significantly, the relative error in ri��N� remains below
0.5%. The optimized shell occupancies faithfully reproduce
their actual counterparts �Fig. 3�. In fact, among spherical
Coulomb crystals of up to 160 particles, correct shell occu-
pancies are predicted in 110 instances, the remaining 50
cases arising from 39 single and 11 double particle misas-
signments.

The published values of ETh�n� �13� suffice for treatment
of spherical Coulomb crystals of up to approximately 1000
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FIG. 1. Errors in the energies per particle pair computed with
fixed �i.e., the exact ones� and relaxed �i.e., those resulting from
minimization of the approximate energy expression �8�� shell occu-
pancies vs the number of particles.
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FIG. 2. Errors in the mean crystal radii computed with fixed
�i.e., the exact ones� and relaxed �i.e., those resulting from minimi-
zation of the approximate energy expression �8�� shell occupancies
vs the number of particles.
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particles. The scarcity of solutions of the Thomson problem
beyond 400 electrons does not hinder the usefulness of the
present model, as the asymptotic formula �10� with
�1=1.105 02 and �2=0.253 108 �20� accurately reproduces
the available data for n�400. One should note that the fitted
value of �1 is close to that of 1.104 60 quoted previously �19�
and not far from the upper bound �and in fact the conjectured
exact value �18�� of

33/4

�2	


�1

2
,
2

3
� − 
�1

2
,
1

3
��
�1

2
,0� � 1.106 10, �13�

where 
�s ,a� is the generalized Riemann zeta function.
Needless to say, the present model accounts for the magni-
tude of the empirical correction � employed in the KB ap-
proach �16�.

The predicted shell capacities �i.e., the maximum shell
occupancies� �mk� together with properties of the spherical
Coulomb crystals with the corresponding total numbers of
particles �Mk� are displayed in Table I. The present model
correctly predicts the first two shell capacities of 12 and 48.
However, the expected appearances of the third and fourth
shells lag behind the observed ones. In particular, the third
shell is predicted to emerge for N=61, whereas it is already
found in the crystals of 58 and 59 particles �9–11�. Similarly,
although the crystals of 155–160 particles are already com-
posed of four shells, the model predicts this to occur only for
N�164. Interestingly, these discrepancies are not caused by
incorrect values of �mk� but by the fact that the crystals tend
to acquire new shells before capacities of the existing ones
are exhausted �note that the crystal of 60 particles is com-
posed of two shells with occupancies of 12 and 48, as pre-
dicted�.

The large-k asymptotics of the shell capacities, given by

mk = 9�1
2 k2 � 10.9896 k2, �14�

is obtained by comparing the energies of the spherical Cou-
lomb crystals with the shell occupancies of �1,m1 , . . . ,mk�
and �m1 , . . . ,mk+1�, which yields

�
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2
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Subtraction of the above conditions for K and K+1 reveals
that their compatibility with the first two terms of the
asymptotic expression �10� calls for

mk = A k2 + ¯ , �16�

where A satisfies the equation

��A − 3�1� 3−5/3A1/6 �− K−1 +
1

2
K−2 + ¯ � = 0, �17�

from which Eq. �14� follows immediately. Substitution of
this result into the approximations �8� and �9� produces the
asymptotics �11� and �12� after some tedious algebra. The
numerical value of the proportionality constant in Eq. �14�
explains the previously observed �14� �and as it now turns
purely accidental� similarities between the shell capacities
and the magic Mackay icosahedra numbers.

III. DISCUSSION AND CONCLUSIONS

In summary, the shell model presented in this paper re-
lates in an approximate fashion properties of spherical Cou-
lomb crystals to the solutions of the Thomson problem. The

TABLE I. The predicted shell capacities, and the corresponding
total number of particles, energies per particle pair, and mean crys-
tal radii.

k mk Mk e�Mk� �ri��Mk�

1 12 12 1.06582 0.6989

2 48 60 1.14209 0.7317

3 104 164 1.16764 0.7404

4 182 346 1.17937 0.7441

5 282 628 1.18572 0.7460

6 409 1037 1.18957 0.7471

7 555 1592 1.19205 0.7478

8 723 2315 1.19373 0.7483

9 912 3227 1.19493 0.7486

10 1124 4351 1.19582 0.7489

11 1358 5709 1.19649 0.7491

12 1613 7322 1.19701 0.7492

13 1891 9213 1.19743 0.7493

14 2191 11404 1.19776 0.7494

15 2512 13916 1.19803 0.7495

16 2856 16772 1.19826 0.7495

17 3221 19993 1.19845 0.7496

18 3609 23602 1.19861 0.7496

19 4018 27620 1.19874 0.7497

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

110

fixed
relaxed

{n
k}

N

FIG. 3. The predicted and actual shell occupancies vs the num-
ber of particles.
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accuracy of the resulting predictions is impressively high in
light of the neglect of both the particle-position relaxation
and the higher multipole moments of individual shells,
though the latter deficiency is obviously mitigated by the
small magnitudes of these moments for the shells with large
occupancies that contribute the most to the total energy.

In principle, inclusion of higher multipole interactions,
coupled with optimization of the Euler angles describing
relative shell orientations, could be carried out. One doubts,
however, whether the resulting marginal gains in accuracy
would justify sacrificing the elegant simplicity of the present
approach.

�1� The potential energy E=�i�j=1
N rij
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2 of N har-
monically confined particles is conveniently rewritten as

E=�i�j=1
N �rij

−1+ ��2 /2N� rij
2 �+ �N�2 /2�RCM

2 , where R� CM is the
center-of-mass position. Upon scaling the interparticle dis-
tances and the energy by �N /�2�1/3 and �3 /2���2 /N�1/3, re-
spectively, Eqs. �1� and �2� follow upon the assumption given
by Eq. �4�. Such a dimensionless formulation has the advan-
tage of being translationally invariant, allowing for the appli-
cation of several theoretical techniques developed for other
clusters with pairwise double-power-law interactions �such as
the Lennard-Jones ones�.
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